Pitfalls of supervised feature selection

نویسندگان

  • Pawel Smialowski
  • Dmitrij Frishman
  • Stefan Kramer
چکیده

Pitfalls of supervised feature selection Pawel Smialowski1,2,∗, Dmitrij Frishman1,2 and Stefan Kramer3 1Department of Genome Oriented Bioinformatics, Technische Universität München Wissenschaftszentrum Weihenstephan, Am Forum 1, 85350 Freising, 2Helmholtz Zentrum Munich, National Research Center for Environment and Health, Institute for Bioinformatics, Ingolstädter Landstraße 1, 85764 Neuherberg and 3Institut für Informatik/I12, Technische Universität München, Boltzmannstr. 3, 85748 Garching b. München, Germany

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine learning based Visual Evoked Potential (VEP) Signals Recognition

Introduction: Visual evoked potentials contain certain diagnostic information which have proved to be of importance in the visual systems functional integrity. Due to substantial decrease of amplitude in extra macular stimulation in commonly used pattern VEPs, differentiating normal and abnormal signals can prove to be quite an obstacle. Due to developments of use of machine l...

متن کامل

کاهش ابعاد داده‌های ابرطیفی به منظور افزایش جدایی‌پذیری کلاس‌ها و حفظ ساختار داده

Hyperspectral imaging with gathering hundreds spectral bands from the surface of the Earth allows us to separate materials with similar spectrum. Hyperspectral images can be used in many applications such as land chemical and physical parameter estimation, classification, target detection, unmixing, and so on. Among these applications, classification is especially interested. A hyperspectral im...

متن کامل

Support Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran

Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...

متن کامل

Supervised Feature Extraction of Face Images for Improvement of Recognition Accuracy

Dimensionality reduction methods transform or select a low dimensional feature space to efficiently represent the original high dimensional feature space of data. Feature reduction techniques are an important step in many pattern recognition problems in different fields especially in analyzing of high dimensional data. Hyperspectral images are acquired by remote sensors and human face images ar...

متن کامل

Semi-supervised Feature Selection via Spectral Analysis

Feature selection is an important task in effective data mining. A new challenge to feature selection is the socalled “small labeled-sample problem” in which labeled data is small and unlabeled data is large. The paucity of labeled instances provides insufficient information about the structure of the target concept, and can cause supervised feature selection algorithms to fail. Unsupervised fe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2010